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Chapter 1
Formal languages

1.1 Basic definitions
The theory of formal languages deals with the systematic analysis, classification,
and construction of sets of words generated by finite alphabets. The key ideas of
formal languages originate in linguistics. Linguistic objects are structured objects,
and a grasp of the meaning of a sentence depends crucially on the speaker’s or lis-
tener’s ability to recover its structure, an ability which is likely to be unconscious
for a native speaker of the language in question. A computational device which
infers structure from grammatical strings of words is known as a “parser.” For-
mal languages, such as propositional calculus, Java, or Lisp, have well-defined
unique grammars. Natural languages, however, are riddled with ambiguities at
every level of description, from the phonetic to the sociological. Jokes for instance
usually exploit ambiguities, in particular word plays: “Time flies like an arrow, fruit
flies like a banana” puns on the different meanings of the words flies and like. So,
formal languages do not seem appropriate for telling jokes.
Definition 1.1. (Alphabet, word, language) An alphabet Σ is a nonempty finite set of
symbols. With Σ0 := {ε} denoting the set of the empty word ε, and Σ1 := Σ we
define

Σn+1 := {xy| x ∈ Σ, y ∈ Σn} (n > 0) (1.1)

Σ+ :=
∞∪

k=1

Σk (1.2)

Σ∗ :=
∞∪

k=0

Σk = Σ+ ∪ {ε}. (1.3)

An element w ∈ Σ∗ is called a word over the alphabet Σ. The length of a word
w, written |w|, is the number of symbols it contains. A subset L ⊂ Σ∗ is called a
language over the alphabet Σ. [10, §4.1], [19, pp 13] ◁

Remark 1.2. A usual data type of programming languages has as underlying al-
phabet Σ the set of all ASCII symbols or all Unicode symbols, where usually the
symbols are called characters and the words over these alphabets are called strings.
In bioinformatics, important alphabets are ΣDNA = {A, C, G, T} representing the
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4 Andreas de Vries

four DNA nuclebases, ΣRNA = {A, C, G, U} representing the four RNA nuclebases,
or ΣAmin = {A, C, D, …} representing the 22 amino acids. The words over these
alphabets are usually called sequences. ♢

Example 1.3. For the alphabet Σ = {a, b} we have

Σ0 = {ε}
Σ1 = {a, b}
Σ2 = {aa, ab, ba, bb}

...
Σ+ = {a, b, aa, ab, ba, bb, aaa, aab, aba, . . .}
Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, . . .}

Then L = {aa, ab} is a language over Σ. ♢

Given a language L, is it possible to find a description by which all words
can be systematically derived? If the formation of words of a language follow
structured rules, they can be generated by a grammar.

Definition 1.4. A grammar G is a four-tuple (V, Σ, P, S) consisting of

• a finite set of variables V,

• a finite alphabet Σ of terminals satisfying V ∩ Σ = ∅,

• a finite set P of productions, or substitution rules, each one having the form
l → r with l ∈ (V ∪ Σ)+ and r ∈ (V ∪ Σ)∗. Alternative options are listed
with a logical OR sign |, e.g., l→ a | b means that l may be substituted either
by a or b.

• a start variable S ∈ V.

If two words x, y ∈ (V ∪ Σ)∗ have the form x = lur and y = lvr with l, r ∈
(V ∪ Σ)∗, then we say “y can be derived from x” and write x ⇒ y if the grammar
contains a production of the form u → v. Moreover, we write x ∗⇒ y if y can be
derived from x in finitely many steps. ◁

Definition 1.5. Any grammar G generates a language

L(G) = {w ∈ Σ∗| S ∗⇒ w} (1.4)

consisting of the words which can be derived from the start variable S. ◁

Example 1.6. (Dyck language) Let be given Σ = {(, ), [, ]}, the variable set V = {S}
with the start variable S as its only element, and the production rules P

S→ ε | SS | [S] | (S). (1.5)

Then GDyck = (V, Σ, P, S) is a grammar. The language D2 := L(GDyck) generated
by it includes the word ()[()](), but ([)] /∈ D2. ♢
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Example 1.7. (Simple English) Let Σ be the Latin alphabet with the 26 lowercase
letters, the space character and the full stop, the variables

V = {⟨sentence⟩, ⟨subject⟩, ⟨predicate⟩, ⟨object⟩,
⟨article⟩, ⟨adjective⟩, ⟨noun⟩} (1.6)

the start variable ⟨sentence⟩, and the production rules P

⟨sentence⟩ → ⟨subject⟩ ⟨predicate⟩ ⟨object⟩.
⟨subject⟩ → ⟨article⟩ ⟨adjective⟩ ⟨noun⟩
⟨article⟩ → a | the

⟨adjective⟩ → sweet | quick | small
⟨noun⟩ → duck | frog | mouse | hippopotamus

⟨predicate⟩ → likes | catches | eats
⟨object⟩ → cookies | chocolate | pizza (1.7)

Then GSE = (V, Σ, P, ⟨sentence⟩) is a grammar. The language L(GSE) generated
by it includes the sentences “the small duck eats pizza.” and “a quick mouse catches
cookies.” ♢

Often a word of a given language is intended to represent a certain object other
than a string, such as a graph, a polynomial, or a machine. However, it is easy
to find an injective mapping from the set of objects to the strings. (This is what
every computer software as a binary string does solving problems dealing with
real-life objects such as addresses, persons, invoices, games, …). Our notation for
the encoding of such an object A into its representation as a string is

⟨A⟩ ∈ Σ∗. (1.8)
(Do not mix up this expression for encoding with the tag notation in the grammar
of Example 1.7 above.) Usually, the underlying alphabet is Σ = {0, 1}. If we
have several objects A1, A2, …, Ak, we denote their encoding into a single string
by ⟨A1, A2, . . . , Ak⟩. The encoding can be done in many reasonable ways. If the
objects are well-defined, however, strings of different encodings can be translated
into each other in a unique way [19, §3.3]. For instance, in the sequel we will
denote the pair ⟨M, x⟩ for the encoding of a Turing machine M (an “algorithm”)
and an input string x.

1.2 The Chomsky hierarchy
In 1957 the US linguist Noam Chomsky postulated a framework by which formal
grammars can be subdivided into four types, according to the following defini-
tions.
Definition 1.8. (a) Recursively enumerable, or phrase-structure grammars (type-0 gram-
mars). Any grammar according to Definition 1.4 is a recursively enumerable gram-
mar.

(b) Context-sensitive grammars (type-1 grammars). A grammar is context-sensitive
if for any production l → r we have |r| ≧ |l|. In particular, a production can never
lead to a shortening of a derived word.
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(c) Context-free grammars (type-2 grammars). A grammar is context-free if for any
production l → r we have l ∈ V. Therefore, the left hand side of a production
always consists of a single variable.

(d) Regular grammars (type-3 grammars). A grammar is regular if for any pro-
duction l → r we have l ∈ V and r ∈ {ε} ∪ ΣV. Therefore, a regular grammar is
context-free and its right hand side is either empty or is a terminal followed by a
variable. ◁

In a context-free grammar, the variable on the left side of the production can be
rewritten by a certain word on the right regardless of the context it finds itself in
the current sentential form: it is independent of its context. In contrast, in context-
sensitive grammars a variable can be substituted by a certain variable only when
it is in the context of other variables or terminals preceding or following it [Mo].
Definition 1.9. A language is called to be of type n if there exists a grammar of
type n which generates L. The set of all type-n languages is denoted by Ln, for n
= 0, 1, 2, 3, ◁

Lemma 1.10. Let the following languages be given.

LC3 := {(ab)n| n ∈N}, (1.9)
LC2 := {anbn| n ∈N}, (1.10)
LC1 := {anbncn| n ∈N}, (1.11)
LC0 := {⟨M, x⟩| M is a Turing machine halting on string x}, (1.12)
Ld := {⟨M, x⟩| M is a Turing machine not accepting x}. (1.13)

For k = 0, 1, 2, 3 then LCk is a language of type k, but LCk is not a language of type
(k + 1) for k ≦ 2. In other words, LC3 is regular, LC2 is context-free but not regular,

General languages
L0: Recursively enumerable languages

(Type-0 languages)
L1: Context-sensitive languages

(Type-1 languages)
L2: Context-free languages

(Type-2 languages)
L3: Regular languages

(Type-3 languages)

Figure 1.1: The Chomsky hierarchy

LC1 is context-sensitive but not context-free, and LC0 is recursively enumerable but not
context-sensitive. We thus have the strict set inclusions

L3 ⊂ L2 ⊂ L1 ⊂ L0, (1.14)

Moreover, Ld is not recursively enumerable, i.e., Ld /∈ L0.
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Proof. The proof is given by the following examples 1.12–1.15, Lemma 1.16, and
the corollaries 1.19, 1.28, 1.36 below. [10, §4]

Remark 1.11. The language LC0 in (1.12) is often also called the “halting problem,”
and the language Ld in (1.13) the “diagonal language.” ♢

Example 1.12. Let G3 = ({B, C, S}, {a, b}, P, S) be a grammar, with the produc-
tions P given by

S → aB
B → bC
C → ε | aB.

Then G3 is a regular grammar since the left hand side of each production consists
of a single variable and each right hand side is either empty a terminal followed
by a variable. Hence the language L(G3) generated by G3 is given by

L(G3) = {ab, abab, ababab, . . .}, (1.15)

i.e., L(G3) = LC3. In particular, LC3 ∈ L3, that is, LC3 is regular. ♢

Example 1.13. Let G2 = ({S}, {a, b}, P, S) be a grammar, with the productions P
given by

S → aSb | ab.

Then G2 is a context-free grammar according to Definition 1.8. Hence the language
L(G2) generated by G2 is given by

L(G2) = {ab, aabb, aaabbb, . . .}, (1.16)

i.e., L(G2) = LC2. In particular, LC2 ∈ L2, that is, LC2 is context-free. ♢

Example 1.14. Let G1 = ({A, B, C, S}, {a, b, c}, P, S) be a grammar, with the
productions P given by

S → SABC | ABC,
BA → AB, CB→ BC, CA→ AC,
AB → ab, BC → bc,
Aa → aa, Ab→ ab, bB→ bb, cC → cc.

Then G1 is a context-sensitive grammar according to Definition 1.8. Hence the
language L(G1) generated by G1 is given by

L(G1) = {abc, aabbcc, aaabbbccc, . . .}, (1.17)

i.e., L(G1) = LC1. In particular, LC1 ∈ L1, that is, LC1 is context-sensitive. ♢
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Example 1.15. For the halting problem we have L(G0) ∈ L0. For the proof we first
have to show that there exists a Turing machine accepting the halting problem,
namely the machine Ũ working on input ⟨M, x⟩ where M is a Turing machine
and x a string, defined as

Ũ(⟨M, x⟩) = accept if M halts on x. (1.18)

(Ũ is a slight modification of a universal Turing machine). Next we have to con-
struct a grammar which simulates the actions of Ũ and generates a terminal string
if Ũ accepts; such a grammar is given, for instance, in [12, Satz 9.4]. ♢

Lemma 1.16. The diagonal language Ld in (1.13) is not recursively enumerable.

Proof. [11, §9.1.4] According to the definition, we have to prove that there exists
no Turing machine which accepts Ld. One key property of Turing machines is that
we can enumerate them such that M1, M2, … exhaust the set of all possible Turing
machines, and assign a number string wi ∈ {0, 1}∗ to Mi for i ∈N, the Gödel code,
[10, §6.1.5.6], [11, §9.1.2]. Thus Ld is the set of words wi such that wi is not in the
language L(Mi) of all strings accepted by Mi.

Assume that there exists a Turing machine M by which the diagonal language
is accepted, i.e., Ld = L(M). Then there exists a number i ∈ N such that Mi =
M and a Gödel code wi coding Mi. Now, is then wi ∈ Ld? (i) If wi ∈ Ld then Mi
excepts wi; but then, by definition of Ld, wi is not in Ld because Ld only contains
those wj such that Mj does not accept wj. (ii) However, if wi /∈ Ld, then Mi does not
accept wi and thus, by definition of Ld, wi is in Ld. Since wi thus can neither be in
Ld nor fail to be in Ld, we conclude that there is a contradiction of our assumption
that M exists. Hence Ld is not recursively enumerable.

1.3 Regular languages
Example 1.17. Let be Gabc = ({S, B, C}, {a, b, c}, P, S)with the production P given
by

S→ aS | aB
B→ bB | bC
C→ cC | c.

(1.19)

Then Gabc is a regular grammar. The language Labc := L(Gabc) generated by it is

Labc = {aibjck| i, j, k ∈N}. (1.20)

It is thus a regular language. ♢

The following theorem presents a technique for proving that a given language
is not regular. The “pumping lemma” states that every regular language has a
“pumping length” such that all longer strings in the language can be pumped by
periodically repeating substrings.
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Theorem 1.18 (Pumping lemma for regular languages). A regular language L has
a number p ∈ N where, if s ∈ L is any word in L of length at least p, then it may be
divided into three pieces

s = xyz (1.21)
satisfying the conditions

xyiz ∈ L for each i ∈N0, (1.22)
|y| > 0, (1.23)
|xy| ≦ p. (1.24)

The number p is called pumping length and is given as p = |V|+ 1, where |V| is the
number of variables of a grammar G generating L.
Proof. Regular languages have a certain word structure. If the number of deriva-
tion steps exceeds the limit p, then by the “pigeonhole principle”1 at least one
variable is repeated, say R. Then given the derivation chain S ⇒ . . . ⇒ R ⇒
. . . ⇒ R ⇒ . . . , the derivation block between the two R’s may be repeated arbi-
trarily often, as depicted in the following diagram for the words xz, xyz, xy2z:

z

R

...

S

x

...

S

R

R

x y z

...

R

S

R

R

x y

...

...

zy

...

Therefore we may cut s into three pieces xyz and repeat the second piece and
obtain a word still in the language, i.e., xyiz ∈ L for any i = 0, 1, 2, … . For more
details on the proof see [10, §4.3.2].
Corollary 1.19. The language LC2 in Equation (1.10) is not regular.
Proof. The proof is by contradiction. Assume that LC2 is regular. Then there exists
a pumping length p according to the pumping lemma 1.18. Select the word s =
apbp. Clearly s ∈ LC2 and |s| > p, and we can apply the pumping lemma to s.
So we can find three words in LC2 such that apbp = xyz, where condition (1.23)
guarantees that y is nonempty. So there are three possible cases:

1. y consists only of a’s: In this case the string xyyz has more a’s than b’s and
therefore is not in LC1, contradiciting (1.22).

2. y consists only of b’s: This case gives also a contradiction to (1.22).
3. y consists of both a’s and b’s: Then xy2z may contain equal numbers of a’s

and b’s, but not in the correct order since there are some b’s before a’s. Hence
it cannot be in LC2.

Therefore, it is impossible to subdivide s into xyz such that all three conditions
(1.22) – (1.24) are satisfied. Hence our introductory assumption must be false, i.e.,
LC2 cannot be regular.

1 The pigeonhole principle is a fancy name for the rather obvious fact that if p pigeons are placed
into fewer than p holes, some hole has to have more than one pigeon in it.
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1.3.1 Regular expressions
Regular language can be elegantly described by regular expressions.
Definition 1.20. Given an arbitrary alphabet Σ, the set RegexΣ of regular expres-
sions is defined recursively by the following rules.

• ∅, ε ∈ RegexΣ, Σ ⊂ RegexΣ,

• If r ∈ RegexΣ then (r) ∈ RegexΣ and r∗ ∈ RegexΣ.

• If r, s ∈ RegexΣ then rs, (r | s) ∈ RegexΣ.
Here the operator | is the logical OR operator, the operator ∗ is the “Kleene star”
or “zero-or-more” operator, where

r∗ := ε | r | rr | rrr | . . . , (1.25)

and the operation (·) is called “grouping.” ◁

Lemma 1.21. The neutral elements of RegexΣ with respect to the | operation are ∅ and
ε, i.e.,

r | ∅ = ∅ | r = r | ε = ε | r = r. (1.26)
Moreover, for r, s, t ∈ RegexΣ we have the law of idempotence,

r | r = r, (1.27)

the law of commutativity,
r | s = s | r, (1.28)

and the laws of distributivity,

r (s | t) = rs | rt, (1.29)
(s | t) r = sr | tr. (1.30)

Definition 1.22. A regular expression r ∈ RegexΣ generates a language L(r) =
LRegexΣ

(r) by the following recursive definition:

L(∅) = ∅,
L(ε) = {ε},
L(a) = {a} (a ∈ Σ),

L(rs) = L(r)L(s),
L ((r | s)) = L(r) ∪ L(s),

L(r∗) = L(r)∗,

where r, s ∈ RegexΣ. ◁

Theorem 1.23. The language L(ab) generated by a regular expression ab ∈ Regex{a,b}
over the alphabet {a, b} is exactly LC3 in (1.9).
Proof. L(a, b) = ab(ab)∗.
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1.4 Context-free languages
The Dyck language in Example 1.6 and the simple English in Example 1.7 are both
context-free languages. By Corollary 1.19, i.e., in the end by the pumping lemma,
replacing a by “(” and b by “)” we see that the Dyck language is not regular.

Example 1.24. Let be Galg = ({A, O, S}, {x, y, z, +, −, ·, /, (, )}, P, S) with the
productions P

S → AOA | (S)
A → S | x | y | z, O→ + | − | · | / (1.31)

Then Galg is a context-free grammar. The language Lalg := L(Galg) generated by it
is the set of all algebraic formulas (in “infix” notation) made of the three variables
x, y, z, of the operations +, −, · and /, and of the round brackets. In particular,

(x + y) · x− z · y/(x− y) ∈ Lalg.

Lalg is thus a context-free language. ♢

Example 1.25. (Simple HTML) Let be Ghtml = (V, ASCII, P, S) with the set of
variables

V = {S, H, T, B, A}
(where A represents plain text and the other variables “tags”) and the production
P

S → <html>HB</html>
H → ε | <head>T</head>
B → ε | <body>A</body>
T → ε | <title>A</title>
A → ε | AA | BA | … | ZA | aA | bA | … | zA | …

Then Ghtml is a context-free grammar, and the language L(Ghtml) is context-free.
For a more detailed study of HTML and XML see [11, §§5.3.3, 5.3.4]. ♢

Example 1.26. (Simple Java) Let be GJava = (V, UTF-8, P, S)with the set of variables

V = {S, M, T, I, N, A}

and the production P

S → public class N { M }
M → ε | T N; | public T N {I} | public static T N {I}
T → void | boolean | int | double
I → ε | A; I

N → AA | BA | … | ZA | aA | bA | … | zA
A → ε | AA | … | ZA | aA | … | zA | 0A | 1A …

(Note that “;” is a terminal!) Here S represents a class, M a class member (attribute
or method), T a data type, I an instruction, N a non-empty string, and A a string.
Then GJava is a context-free grammar, and the language LJava := L(GJava) therefore
is context-free, too. ♢
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Similarly to the pumping lemma 1.18 for regular languages, the following the-
orem supplies a technique for proving that a given language is not context-free.
The “pumping lemma” states that every context-free language has a “pumping
length” such that all longer strings in the language can be pumped with two sub-
strings.
Theorem 1.27 (Pumping lemma for context-free languages). A context-free lan-
guage L has a number p ∈ N where, if s ∈ L is any word in L of length at least p, then
it may be divided into five pieces

s = uvxyz (1.32)
satisfying the conditions

uvixyiz ∈ L for each i ∈N0, (1.33)
|vy| > 0, (1.34)
|vxy| ≦ p. (1.35)

The number p is called pumping length and is given as

p = k|V|+1 (1.36)

where k ≧ 2 is the maximum number of symbols in the right-hand side of the production
rules of a grammar G generating L, and |V| is the number of variables of the grammar.
Proof. The main task of the proof is to show that any string s in L can be pumped
and still remains in L. Because s is derivable from the grammar G, it has a parse
tree. Since s is rather long, its parse tree is rather tall, that is, it must contain some
long path from the from the start variable at its root to one of the terminal symbols
at a leaf. On this long path then some variable symbol R must repeat because of
the pigeonhole principle. As the following figure shows, this repetition allows us
to replace the subtree under the second occurence of R and still get a legal parse
tree for the words uxz, uvxyz, and uv2xy2z:

x

R

S

..
.

u z z

R

R

S

..
.

..
.

u v x y

y

R

R

R

..
.

..
.

..
.

S

u z

v x y

v

Therefore we may cut s into five pieces uvxyz and repeat the second and fourth
pieces and obtain a word still in the language, i.e., uvixyiz ∈ L for any i = 0, 1, 2,
… . For more details on the proof see [19, §2.3].
Corollary 1.28. The language LC1 in Equation (1.11) is not context-free.
Proof. The proof is by contradiction. We assume that LC1 is context-free. Then
by the pumping lemma 1.27 there exists a pumping length p. Select the word
s = apbpcp. Clearly s ∈ LC1 and |s| > p, and we can apply the pumping lemma
to s. So we can find five words in LC1 such that apbpcp = uvxyz. First, condition
(1.34) stipulates that either v or y is nonempty. So there are two possible cases:
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1. Both v and y contain only one type of alphabet symbol: Then v cannot con-
tain both a’s and b′s or both b’s and c’s, and the same holds for y. In this
case the string uv2xy2z cannot contain equal numbers of a’s, b’s, and c’s,
and therefore it is not in LC1, contradiciting (1.33).

2. Either v or y contain more than one type of symbol: Then uv2xy2z may con-
tain equal numbers of the three alphabet symbols a, b, c, but not in the correct
order. Hence it cannot be in LC1.

Therefore, it is impossible to subdivide s into uvxyz such that all three conditions
(1.33) – (1.35) are satisfied. Therefore, our introductory assumption must be false,
i.e., LC1 cannot be context-free.

More examples of languages for which the pumping lemma can be applied to
prove that they are not context-free are {aibjck| 0 ≦ i ≦ j ≦ k} or {ww| w ∈
{a, b}∗}, as shown in [19, §2.3]. However, the pumping lemma only presents nec-
essary conditions for non-context-free languages, but not sufficient conditions.
That is, there may be languages which satisfy the conditions of the pumping
lemma but are not context-free. An example is given in [10, §4.4]. However, a
sharper necessary condition is known, called Ogden’s lemma.

Theorem 1.29 (Ogden’s lemma). A context-free language L has a number p ∈ N

where, if s ∈ L is any word in L of length at least p, then it satisfies the following
property: marking at least p symbols in s, the word s may be divided into five pieces

s = uvwxy (1.37)

satisfying the conditions

• at least one symbol in vx is marked,

• at most p symbols are marked in vwx,

• uviwxiy ∈ L.

Proof. [11]

Example 1.30. Let GLuk = ({S}, {a, b}, P, S) be a grammar, with the productions
P given by

S → aSS | b.

Then GLuk is a comtext-free grammar according to Definition 1.8, but not regular.
The language it generates is called the Łukasiewicz language. ♢

1.4.1 Linear languages
Definition 1.31. A context-free grammar is called linear if the right hand side of
each of its productions contains at most one variable. A language is called linear
if it can be generated by a linear grammar [12, p. 109]. ◁
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Example 1.32. (Palindrome language) The grammar Gpal = ({S}, {a, b}, P, S) with
the productions

S→ aSa | bSb | a | b | ε (1.38)
is linear. It generates the palindrome language Lpal = {wwR| w ∈ {a, b}∗}. ♢

Proposition 1.33. The palindrome language Lpal is not regular.
Proof. Assume that Lpal is regular. Then by the pumping lemma 1.18 above the
string s = apbap, with p being the pumping length, can be divided into three pieces
s = xyz with |y| > 0 and |xy| ≦ p. Thus y consists solely of a’s. By the pumping
lemma the string s′ = xy2z ∈ Lpal, but since s′ contains more a’s on the left hand
side than on the right hand side it cannot be a palindrome. This contradiction
proves that our assumption was wrong, i.e., Lpal is not regular.

The linear languages are not closed under the ∗ operation [12, p. 150].

1.5 Context-sensitive languages
Nearly every imaginable language is context-sensitive. The only known proofs of
the existence of not context-sensitive languages are based on the undecidability
of the halting problem [11, §9.3].
Example 1.34. Let Gexp = ({A, B, C, D, E, F, G, S}, {a}, P, S) be a grammar, with
the productions P given by

S → AB, B→ C | D, aC → Ca, AC → aa, AD → AaaB,
aD → EF, aE→ Ea, AE→ AaG, Ga→ aaG, GF → aaaB.

Then Gexp is a context-sensitive grammar according to Definition 1.8. Hence the
language L(Gexp) generated by G0 is given by

L(Gexp) = {aa, aaaa, a8, a16, . . .}, (1.39)

i.e., L(Gexp) ∈ L1. [12, Ex. 9.4 adapted] ♢

Proof. First we prove by induction over n that we can always derive

S ∗⇒ Aa2n−2 B (1.40)

for n ∈ N. For n = 1 we have clearly S → AB by the first production rule, and
from (1.40) for n ∈N we achieve the respective equation (1.40) for n + 1 by

Aa2n−2 B⇒ Aa2n−2 D ⇒ Aa2n−3 EF ∗⇒ AEa2n−3 F
⇒ AaGa2n−3 F ∗⇒ Aa2n+1−5 GF → Aa2n+1−2 B (1.41)

As a second derivation we directly see that

Aa2n−2 B⇒ Aa2n−2 C ∗⇒ ACa2n−2 ⇒ a2n
. (1.42)

With (1.40) this gives S ∗⇒ a2n for any n ∈N.
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Example 1.35. [10, Abb. 4.26] Let G′exp = ({D, L, S}, {a}, P, S) be a grammar, with
the productions P given by

S → SD, SD → LaD, aD → Daa, LD → L, L→ ε.

Then G′exp is a recursively enumerable grammar according to Definition 1.8, but
not context-sensitive because of the second to last substitution rule. However, the
language L(G′exp) generated by G′exp is given by

L(G′exp) = {a, aa, aaaa, a8, a16, . . .}, (1.43)

i.e., L(G′exp) = Lexp in Example 1.34. Therefore, a non-context-sensitive grammar
can generate a context-sensitive language. ♢

Corollary 1.36. The language LC0 in Equation (1.12) is not context-sensitive.

Proof. We prove by contradiction that H := LC0 is not decidable (“decidable”
being the same as “recursive” in [11]). Since every context-sensitive language is
decidable [12, Satz 9.7], this proves the assertion. Assume that LC0 is decidable.
Then in particular the Turing machine Ũ in (1.18) exists, and we can construct
the Turing machine D with input ⟨M⟩, where M is an arbitrary Turing machine,
which runs H as a subroutine with the input ⟨M, ⟨M⟩⟩ and does the opposite of
Ũ, that is, D rejects if M accepts, and accepts if M rejects:

D = “On input ⟨M⟩, where M is a Turing machine,
1. Run Ũ on input ⟨M, ⟨M⟩⟩;
2. Output the opposite of Ũ.”

Therefore,

D(⟨M⟩) =
{

accept if M does not accept ⟨M⟩,
reject if M accepts ⟨M⟩. (1.44)

and, applied to itself,

D(⟨D⟩) =
{

accept if D does not accept ⟨D⟩,
reject if D accepts ⟨D⟩. (1.45)

No matter what D does, applied on itself as input it is forced to output the op-
posite, which is a contradiction. Thus the halting problem LC0 cannot be decid-
able.

For the solution of the decidability of the halting problem it was essential to ap-
ply Ũ(⟨M, ⟨M⟩⟩), i.e., to run a Turing machine M on its own description, M(⟨M⟩).
This is similar to running a program with itself as input, something which does
occasionally occur in practice. For example, a compiler is a program which trans-
lates other programs; a compiler for the language Java may itself be written in
Java, so it could be running on itself.
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1.5.1 Indexed languages
Among the many proposed generalizations of context-free languages the “index
languages,” introduced by Aho in 1968, seem to be rather well adapted to natural
languages [3], [GM, §4-1.6.3]. They use a set of indices working as a recursive
stack.

Definition 1.37. [12, §14.3] An indexed grammar is a five-tuple (V, Σ, I, P, S) where
V is a set of variables with the start variable S ∈ V, Σ is an alphabet, I is a set of
indices, and the set P of productions having the form

A.. → α.., A.. → B f .., A f .. → α.. (1.46)

where A, B ∈ V, f ∈ I, ..∈ I∗, and α ∈ (V ∪ Σ)∗. Whenever a production of the
first kind is applied to A, the index string .. is attached to each variable in α (but
not its terminals). For productions of the second kind, the index is added to the
front of the A’s index string and attached to B. By productions of the third kind,
the index is removed from the index string, and the index reminder is distributed
over the variables, as before. A language is called indexed if it can be generated by
an indexed grammar. ◁

Example 1.38. [12, §14.3] Let G = ({S, T, A, B, C}, {a, b, c}, { f , g}, P, S} be an
indexed grammar with the productions

S → Tg, A f → aA, Ag → a,
T → Tf , B f → bB, Bg → b,
T → ABC, C f → cC, Cg → c.

For instance we have

S ⇒ Tg ⇒ Tf g ⇒ A f gB f gC f g

⇒ aAgB f gC f g ⇒ aaB f gC f g ⇒ aabBgC f g

⇒ aabbC f g ⇒ aabbcCg ⇒ aabbcc,

and thus in general

S ∗⇒ Tf ig ⇒ A f igB f igC f ig
∗⇒ ai+1bi+1ci+1 (1.47)

for i ∈ N0. Therefore, the language L(G) generated by G is exactly LC1 in (1.11).
According to Example 1.14 and Corollary 1.28, L(G) is context-sensitive but not
context-free. ♢

Theorem 1.39. A context-free grammar is representable as an indexed grammar. In
turn, an indexed grammar is context-sensitive.

Proof. A context-free grammar A→ α directly induces an indexed grammar with
an empty index set I = ∅. The second assertion is proved in [12, Theorem 14.7].
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Global Index Languages
Global index grammars use the stack of indices as a global control structure during
the entire derivation of a word. Global index grammars are a kind of regulated
rewriting mechanism with global context and history of the derivation as the main
characteristics of its regulating device [3, §1.2.2].
Definition 1.40. [3, §1.2.2] A global index grammar is a five-tuple (V, Σ, I, P, S)
where V, Σ, I are pairwise disjoint sets, V denoting the set of variables, Σ the set
of terminals, I the set of stack indices, S ∈ V the start symbol, and P the set of
productions of the form

A→ α, A··[..]→ aα··[i..] (push), A··[j..]→ α··[..] (pop),
with A ∈V, α, ·· ∈ (V ∪ Σ)∗, a ∈ Σ, i ∈ I∗, j ∈ I, and ..∈ I∗. In contrast to a general
indexed grammar as given by Definition 1.37, the global index [··] is not attached
to each of its member variables. The second to last production is called a push
operation, the last one a pop operation. The derivation⇒ is defined as in Definition
1.4. Then L(G) is the language of G defined as L(G) = {w ∈ Σ| S[] ∗⇒ w[]},
analogously to (1.4). The empty stack often is simply omitted, i.e., α[] = α. ◁
Example 1.41. (Copy language) [3, §1.2.2] Let Gcopy = ({S, R, A, B, L}, {a, b}, {i, j},
P, S) with the productions

S→ AS | BS | RS | L,

R··[i..]→ RA··[..], R··[j..]→ RB··[..], R··[]→ ε··[],
A··[..]→ a··[i..], B··[..]→ b··[j..],
L··[i..]→ La··[..], L··[j..]→ Lb··[..], L··[]→ ε··[].

For instance,
S[]⇒ AS[]⇒ aS[i]⇒ aBS[i]⇒ abS[ji]⇒ abRS[ji]
⇒ abRBS[i]⇒ abRABS[]⇒ abABS[]⇒ abaBS[i]
⇒ ababS[ji]⇒ ababL[ji]⇒ ababLb[i]⇒ ababLab[]⇒ abababab[]

Therefore, L(Gcopy) = {ww+| w ∈ {a, b}∗}. L(Gcopy) is context-sensitive, but
not context-free as can be seen by the pumping lemma 1.27. The copy language
L(Gcopy) is relevant for coordination in natural languages. ♢
Example 1.42. (Bach language) Let GBach = ({S, D, F, L}, {a, b, c}, {i, j, k, l, m, n},
P, S) with the productions

S→ FS | DS | LS | ε,

F··[..]→ c··[i..], F··[..]→ b··[j..], F··[..]→ a··[k..],

D··[..]→ aSb··[l..] | bSa··[l..], D··[..]→ aSc··[m..] | cSa··[m..],

D··[..]→ bSc··[n..] | cSb··[n..],

D··[i..]→ aSb··[..] | bSa··[..], D··[j..]→ aSc··[..] | cSa··[..],
D··[k..]→ bSc··[..] | cSb··[..],
L··[l..]→ c[..], L··[m..]→ b[..], L··[n..]→ a[..],
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For instance,

S⇒ FS⇒ FDS⇒ FDLS⇒ FDL⇒ cDL[i]
⇒ caScL[mi]⇒ caScb[i]⇒ caDScb[i]⇒ caaSbScb⇒ caabcb

In total we have L(GBach) = {w | |w|a = |w|b = |w|c}. (Here |w|a denotes the
number of symbols a in the word w.) This is the Bach language, or MIX language,
which is conjectured to be not an indexed language [3, §1.2.2]. ♢

Example 1.43. (Dependent branches) [3, §1.2.2] Let Gsum = ({S, R, F, L}, {a, b, c, d,
e, f }, {i}, P, S) with the productions

S··[..]→ aS f ··[i..] | R··[..], R→ FL | F | L,

F··[i..]→ bFc··[..] | bc··[..], L··[i..]→ dLe··[..] | de··[..],

For instance,

S⇒ aS f [i]⇒ aaS f f [ii]⇒ aaR f f [ii]⇒ aaFL f f [ii]
⇒ aabcL f f [i]⇒ aabcde f f

Therefore, L(Gsum) = {anbmcmdlel f n| n = m + l ≧ 1}. This language cannot be
generated by a linear indexed grammar, as introduced in Definition 1.44. ♢

Linear Indexed Languages

Definition 1.44. A linear indexed grammar is a five-tuple (V, Σ, I, P, S) where V is
a set of variables, Σ a set of terminals, I a set of indices, S ∈ V a start variable, and
P a set of productions of the form

A[..]→ αB[..]γ, A[i..]→ αB[..]γ, A[..]→ αB[i..]γ, (1.48)

where A, B ∈ V, α, γ ∈ (V ∪ Σ)∗, i ∈ I, and .. ∈ I∗. ◁

Linear indexed grammars are therefore indexed grammars with the additional
constraint in the productions that the stack of indices can be transmitted only to
at most one variable. As a consequence they are “semilinear.”

Example 1.45. [3, §1.2.1] Let Gwcw := {{S, R}, {a, b, c}, {i, j}, P, S} with the pro-
ductions P given by

S[..]→ aS[i..], S[..]→ bS[j..], S[..]→ cR[..],

R[i..]→ R[..]a, R[j..]→ R[..]b, R[]→ ε.

Then L(Gwcw) = {wcw | w ∈ {a, b}∗}. ♢
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General languages
L0: Recursively enumerable languages

L1: Context-sensitive languages
LGIG: Global index languages
L2: Context-free languages

Llin: Linear languages
L3: Regular languages

Figure 1.2: Hierarchy of languages, including the Chomsky hierarchy Figure 1.1.

1.5.2 The extended language hierarchy
The linear and the indexed languages are included in the Chomsky hierarchy by
the language hierarchy in Figure 1.2. Example 1.42 shows that the Bach language
is a global index language, and since it is believed that it is not an indexed lan-
guage it is suggested that global index languages and indexed language do neither
contain each other. To date, however, this has not been proved. Both language
classes are context-sensitive and include context-free languages. The only known
fact is that by 1.43 both language classes contain the class of linear indexed lan-
guages.

[4] proved the fact that global index languages are context-sensitive by con-
structing the respective automaton LR-2PDA accepting global index languages
and by implementing it as a linear bounded automaton with the stack naturally
represented by the linear bounded tape, see §1.6.

1.6 Languages and machines
There is a close relationship between formal languages and finite automata which
“accept” them. In particular, an automaton corresponding to a certain language
L directly solves the word problem of L , i.e., decides whether a given word w ∈
Σ∗ formed by the underlying alphabet satisfies w ∈ L . Especially, a machine
accepting a (usually context-free) programming language is called a parser [19,
p. 99]. In this section we will briefly look at the big picture.

Definition 1.46. A deterministic finite state machine, often shortly called machine or
automaton, is a five-tuple (S, Σ, δ, E, s0) consisting of

• a finite set of states S,

• a finite input alphabet Σ,

• a state transition function δ : S× Σ→ S,

• a set of final states E ⊆ S,
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• an initial state s0 ∈ S.
For a given input word w0w1 . . . wn ∈ Σ∗ and two states s, s′ ∈ S we write

(s, w0w1 . . . wn)→ (s′, w1 . . . wn) (1.49)
if s′ = δ(s, w0). ◁

Initially, any automaton is in its initial state s0. If it gets the input word w =
w0w1 . . . wn ∈ Σ∗, it runs through the states s0, s1, . . . , sn+1 with si+1 = δ(si, wi).
Accordingly, an automaton can be represented by its state diagram where each
state is represented by a circle and each state transition si → si+1 by an arrow
indicated by wi and directing from si to si+1, see Figure 1.3. From a given state

· · ·
si

wi
si+1
· · ·

Figure 1.3: State diagram of a finite-state automaton.

there can start several arrows to different states and even back to itself.
Definition 1.47. An automaton A = (S, Σ, δ, E, s0) is said to accept an input word
if the final state induced by it is an element of the set E of final states, i.e., if for
w = w0w1 . . . wn ∈ Σ∗ we have sn+1 = δ(sn, wn) ∈ E. The language L(A) which
is accepted by A is given by

L(A) = {w0 . . . wn ∈ Σ∗| δ(. . . (δ(s0, w0), w1), . . .), wn) ∈ E},

or equivalently
L(A) = {w ∈ Σ∗| ∃s f ∈ E with (s0, w)→ (s f , ε)}, (1.50)

i.e., L(A) contains all the words for which the final state is permissible. ◁
Definition 1.48. A pushdown automaton is a five-tuple (S, Σ, Γ, δ, s0) consisting of

• a finite set of states S,
• a finite input alphabet Σ with ε /∈ Σ,
• a finite stack alphabet Γ with ⊥ ∈ Γ,
• a transition relation δ : S× (Σ ∪ {ε})× Γ→P(S× Γ∗),
• an initial state s0 ∈ S.

Here P(A) for an arbitrary set A denotes the power set of A, i.e., the set of all
possible subsets of A. In particular, ∅, A ∈P(A), and |P(A)| = 2|A|, [9, 4.19].
For γ ∈ Γ, the words w ∈ Σ∗ and κ ∈ Γ∗ and two states s, s′ ∈ S we write

(s, w, γκ)→ (s′, w, κ′aκ) (1.51)
if (s′, κ′) ∈ δ(s, ε, γ), and

(s, σw, γκ)→ (s′, w, κ′aκ) (1.52)
if (s′, κ′) ∈ δ(s, σ, γ) with σ ∈ Σ. ◁
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Definition 1.49. A pushdown automaton A = (S, Σ, Γ, δ, s0) is said to accept an
input word if

L(A) = {w ∈ Σ∗| (s0, w,⊥)→ (s, ε, ε)}, (1.53)
i.e., L(A) contains all the words for which the final state leaves an empty stack. ◁

Although the definitions of the accepted language of a deterministic machine
(1.50) and a pushdown automaton (1.53) formally resemble to one another, the
final state in a pushdown automaton is not uniquely determined.

Definition 1.50. [4] A LR-2PDA, or Left-right two stack pushdown automaton, is
a five-tuple (S, Σ, Γ, δ, s0) consisting of

• a finite set of states S,

• a finite input alphabet Σ with ε /∈ Σ,

• a finite stack alphabet Γ with ⊥ ∈ Γ,

• a transition relation δ : S× (Σ ∪ {ε})× Γ× Γ→P(S× Γ∗ × Γ∗),

• an initial state s0 ∈ S.

The only difference to a pushdown automaton in Definition 1.48 above is therefore
the existence of a second stack in the domain and range of the transition function
δ. ◁

Definition 1.51. [1, p. 12], [10, pp 267, 274], [19, pp 140, 193] A (deterministic)
Turing machine M is a seven-tuple (S, Σ, Γ, δ, s0, [ , E) consisting of

• a finite set S of possible states (in which M’s “register” can be),

• a finite input alphabet Σ,

• a tape alphabet Γ ⊇ Σ containing a blank symbol [ /∈ Σ,

• a transition function δ : S× Γ → S× Γ× {←,→} describing the rules the
machine M uses in performing each step of M.

• an initial state s0 ∈ S,

• a set of final states E ⊆ S.

There are two kinds of transitions, the right translation δ(s, σ) = (s′, σ′,→), which
we write as

(vρ, s, σw)→
{

(vρσ′, s′, w) if w ̸= ε,
(vρσ′, s′, [ ) if w = ε, (1.54)

and the left translation δ(s, σ) = (s′, σ′,←), written as

(vρ, s, σw)→
{

(v, s′, ρσ′w) if v ̸= ε,
( [ , s′, ρσ′) if v = ε, (1.55)
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with the symbols ρ, σ ∈ Γ, the words v, w ∈ Γ+, and the state s ∈ S. (Note the
different meanings of the arrows “→“ as a control symbol and as state transition
sign.)

A nondeterministic Turing machine M is a seven-tuple (S, Σ, Γ, δ, s0, [ , E) con-
sisting of the same elements as a determistic Turing machine, but with a transition
relation

δ : S× Γ→P(S× Γ× {←,→}). (1.56)
A Turing machine is called linear bounded, or shortly linear bounded automaton, if
only the symbols of the input word are changed, such that any output sequence
cannot be longer than the input sequence. ◁

Theorem 1.52. Any language accepted by a deterministic finite automaton is regular,
and for each regular language there exists a finite automaton accepting it.
Proof. [10, §5.4]

With this theorem, the proof idea of the pumping lemma 1.18 for regular lan-
guages can be beautifully illustrated by the state diagram of the machine [19,
Thm. 1.70], see Figure 1.4. A word thus can be pumped if it induces a closed loop

· · ·
sk x

sl

y
z sm

· · ·

Figure 1.4: The effects of the words x, y, and z in the pumping lemma 1.18 above.

in the state diagram of the machine, which must necessarily exist if the length of
xy is longer than the number of states. Moreover, the word problem of a regular
language is simply solved by applying the corresponding finite-state automaton
to the input word w ∈ Σ∗ and looking if it is accepted [10, §5.4.2]. The running
time of this algorithm is linear with respect to the word length n, i.e., it is O(n).
Theorem 1.53. Any language accepted by a pushdown automaton is context-free, and
for each context-free language there exists a pushdown automaton accepting it.
Proof. [10, §5.5.2]

The word problem of context-free languages is solved by the CYK which has
running polynomial time O(n3)with respect to the input word length n [10, §4.4.4].
Theorem 1.54. Any language accepted by a LR-2PDA is a global index language, and
for each global index language there exists a LR-2PDA accepting it.
Proof. [2] proves that a modified version of the Earley algorithm

The word problem of global index languages is solved by Castaño’s modified
Earley algorithm which has running polynomial time O(n6) with respect to the
input word length n [2, p. 33].
Theorem 1.55. Any language accepted by a nondeterministic linear bounded Turing
machine is context-sensitive, and for each context-sensitive language there exists a non-
deterministic linear bounded Turing machine accepting it.
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Proof. [10, Satz 6.15]
It is a still open question whether any context-sensitive language is accepted

by a deterministic linear bounded Turing machine [12, p. 239]. This question is
known as the “first LBA problem” initially posed by [15], cf. [10, p. 302].2

Theorem 1.56. Any language accepted by a Turing machine is recursively enumerable,
and for each recursively enumerable language there exists a Turing machine accepting it.
Proof. [10, Satz 6.14]
In summary, the relationships of languages, grammars, automata and word prob-
lems are given in Table 1.1. The language classes in the left column of this table
consist of exactly those languages that are accepted by the automata and gener-
ated by the grammars in the same line. Each line contains all of those above it.
The right hand column shows the computational complexity of solving the word
problem, i.e., of recognizing whether a given word is an element of the respective
language. These relationships have fundamental importance in computer science.

Table 1.1: Languages and automata. Modified from [18]

Language Automaton Grammar Recognition w ∈ L ?

regular
finite-state regular

A→ xA linear

context-free
pushdown
(stack) context-free

S→ xSy
polynomial

(CYK, O(n3))

global index
LR-2PDA

global index
S[i]→ xSy[ji]

polynomial
(O(n6))

context-sensitive
linear bounded

context-sensitive
Ax → yA

exponential (?)

recursively enumerable
Turing machine

unrestricted
Bxx → A

undecidable

In general, we can identify problems with languages, words with solution candi-
dates, and algorithms with Turing machines [17, p. 59]. Then the classifications
of algorithmic problems correspond to the one of grammars. In particular, the set
Lreg of all regular languages is precisely SPACE(n) [17, p. 55], the set Lcf of all
context-free languages is in P, [17, p. 67], and the set Lcs of all context-sensitive
languages is precisely NSPACE(n) [17, p. 67], i.e.,

Lreg = SPACE(n), Lcf ⊂ P, Lcs = NSPACE(n). (1.57)
2 Kuroda’s “second LBA problem” has been solved in 1987 by the Immerman–Szelepcsényi

Theorem [1, §4.3.2], [17, Thm. 7.6].
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Here a language L is in the space complexity class SPACE(n) if there is a Turing
machine that decides L and operates within space bound n [17, p. 35], in the time
complexity class P if there is a Turing machine that decides L and operates within
time bound nk for some k ∈ N, and in the space complexity class NSPACE(n)
if there is a nondeterministic Turing machine that decides L and operates within
space bound n [17, p. 141], see also [Zoo]. According to [17, Thm. 7.4 and p. 142],

SPACE(n) ⊂ P and NSPACE(n) ⊂ NP. (1.58)

Moreover, SPACE(n) ̸= NP [17, p. 155]. The word problem for a context-sensitive
language is probably solvable only by complete enumeration, i.e., by non-polyno-
mial algorithms. If, however, we had P = NP, then the word problem would be
solvable in polynomial time, too, and there would be no essential difference be-
tween context-free and context-sensitive languages from the perspective of com-
putational complexity. This indeed would be surprising.

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.
L. Wittgenstein (1918), Tractatus Logico-Philosophicus, 5.63

3 http://books.google.de/books?id=BraohBA1avIC&pg=PA118 [2012-03-17]: The limits of my lan-
guage are the limits of my world.

http://books.google.de/books?id=BraohBA1avIC&pg=PA118


Appendix A
Mathematical Foundations

A.1 Notation
Mathematical and logical symbols
:= is defined as
∅ the empty set, ∅ = {}
∀ for all
∃ there exists
∃1 there exists exactly one
⇒ implies, only if
⇐ follows from, if
⇔ if and only if
Number sets
N the natural numbers, N = {1, 2, 3, . . .}
N0 the natural numbers with zero, N0 = {0} ∪N

Z the integers, Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}
Z× the nonvanishing integers, Z× = Z \ {0}
Q the rational numbers, Q = {m

n | m ∈ Z, n ∈N}
Q× the nonvanishing rational numbers, Q× = Q \ {0}
R the real numbers, R = (−∞,+∞)
R× the nonvanishing real numbers, R× = R \ {0}

A.2 Sets
The fundamental notion of mathematics is the set. Intuitive as at seems at first
sight, this notion is rather subtle. It was a recognized in the beginning of the
20th century that a collection of objects need not be a set. A set is a mathematical
concept which obeys strict axioms, the words “collection”, “class”, “family”, or
“system” of objects (which may also be sets) are often loosely used.

In mathematical logic, the notions “set” and “element x of a set S,” denoted x ∈
S, are frequently used obeying the eight axioms of Zermelo-Fraenkel [6, §VII.3],
[16, §3], [Ra, §2], [21, §4.4.3]:

(i) Axiom of extensionality: Two sets are equal if and only if they have the same
elements.

25
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(ii) Axiom of separation: For every set S and each property A there exists a set T
of those elements of S with the property A , written symbolically

T = {x ∈ S | x has the property A }. (A.1)

(iii) Axiom of pairing: For every two sets S and T there exists the set {S, T}.

(iv) Axiom of union: For every set S the union ∪
S of sets in S is a set.

(v) Axiom of power set: For every set S there exists the power set P(S) of S,
written P(S) = {A | A ⊂ S}.

(vi) Axiom of infinity: There exists a set which contains the infinitely many sets 0
:= ∅, 1 := {∅}, 2 := {∅, {∅}}, 3 := {∅, {∅, {∅}}}, … , or in other words,
1 = {0}, 2 = {0, 1}, and in general n = {0, 1, …, n− 1}.

(vii) Axiom of replacement: If the expression φ(x, y, z1, . . . , zn) for chosen param-
eters z1, …, zn defines an association x 7→ y = f (x), then the image f (A) of
a set is a set.

(viii) Axiom of choice: For a given finite or infinite index set I and every family
(Si)i∈I of nonempty sets Si there exists a family (xi)i∈I of elements xi ∈ Si
for every i ∈ I.

This system of axioms is also called ZFC, for Zermelo-Fraenkel with axiom of
choice. The axiom of choice is the most famous of the ZFC axioms. There are a se-
ries of equivalent axioms, for instance Zorn’s lemma or Zermelo’s well-ordering
theorem [16, §8.8], [20, p 5]. In contrast to the other axioms it does not tell con-
structively when general classes can be regarded as sets, but represents a mere
existence postulate: It offers no recipe how an element of each set of a system of
nonempty sets could be chosen.

Historically perhaps most important is Axiom (ii), the axiom of separation,
which excludes Russell’s antinomy. In 1901 Russel communicated this paradox
to Frege, the leading mathematical logician of the period.1 It shattered Cantor’s
(nowadays called naive) set theory. Since Frege at this time was going to publish
his second edition of Grundgesetze der Arithmetik, which finally was released in
1903 and which heavily based on Cantor’s set theory, he draw the bitter conclusion
in the epilog:

Einem wissenschaftlichen Schriftsteller kann kaum etwas Unerwünschteres
begegnen, als daß ihm nach Vollendung einer Arbeit eine der Grundlagen
seines Baues erschüttert wird. In diese Lage wurde ich durch einen Brief des
Herrn Bertrand Russell versetzt, als der Druck dieses Bandes sich seinem
Ende näherte.

1 In 1879, Gottlob Frege (1848 – 1925) published his Begriffsschrift, eine der arithmetischen nachge-
bildete Formelsprache des reinen Denkens (“concept notation, a formula language, modelled on that
of arithmetic, of pure thought”). The Begriffsschrift was arguably the most important publication
in logic since Aristotle founded the subject more than 2000 years before.



Formal Languages 27

Zermelo, who had discovered the paradox even a year before Russell but did not
publish it, solved the problem in 1908 by introducing a set theory basing on the
axiom of separation.
Theorem A.1 (Exclusion of Russell’s antinomy). There exists no set of all sets. (Or
equivalently: The class of all sets is not a set.)
Proof. Assume there exists a set M of all sets. By the axiom of separation, Axiom
(ii), the class R = {x ∈ M | x /∈ x} then is a set. Hence there are two possibilities:
(i) If R /∈ R, then R ∈ R, by construction of R. (ii) If R ∈ R, then R /∈ R by
construction of R. Hence we get the contradiction R ∈ R ⇐⇒ R /∈ R, i.e., the
assumption must be wrong.
Theorem A.2. Given two sets A and B, for x ∈ A and y ∈ B the “Kuratowski pair”
(x, y) := {{x}, {x, y}}, also called the “ordered pair” (x, y), satisfies

(x, y) = (x′, y′) ⇐⇒ x = x′ and y = y′, (A.2)
and the class

A× B := {(x, y)| x ∈ A and y ∈ B} (A.3)
is a set, called the Cartesian product of A and B.
Proof. The property (A.2) of ordered pairs follows directly from the ZFC axioms
(i) and (iii), the second assertion follows from axioms (ii) and (v). For details see
[16, §4.3].

Why do we need the axiom of infinity? For instance, the set
4 = {∅, {∅}, {{∅}}, {{{∅}}}}

can be represented as boxes in boxes:

∅ ∅ ∅ ∅

Each element of the set leaves us in a situation resembling the birthday child who
receives the “disappointing gift” [16, p 180], namely a huge box which is opened
to exhibit another box, which can be opened again to show another box in which
is another box etc., to eventually present — an empty set.

Up to the end of the 19th century it was commonplace belief among philoso-
phers and mathematicians that the existence of infinite sets could be proved. In
particular, one thought that the set of natural numbers could be constructed by
logic. We know better now. “Logic can codify the valid forms of reasoning but it cannot
prove the existence of anything” [16, p 27]. Zermelo was the first to recognize that
the axiom of infinity has to be postulated to construct the set of natural numbers.

The axiom system of Zermelo-Fraenkel ZFC works well, that is, virtually all
results in current mathematics can be derived by it.2 However, there remains an
uncomfortable property of the system to allow the set

Ω = {Ω}. (A.4)
2 It is a still open question, though, whether ZFC is logically consistent at all [6, pp 120].
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We can think of Ω as the “ultimately frustrating gift” [16, p 181] since denoting
Ω by a box □, each box has exactly one box inside, identical with the one just
opened, and you can keep opening the boxes without ever finding anything …

· · ·

Not even an empty set. If such phenomena are desired to be banned, it is common
to use the following additional axiom proposed by von Neumann in 1925:

(ix) Axiom of Regularity: Every non-empty set S contains an element x which is
disjoint from S.

ZFC with the axiom of regularity thus forbids the set Ω = {Ω}, and hence in set
theories based on this extension there exists no ultimately frustrating gift.

A.3 Maps
Definition A.3. Let A, B be two sets. A map, or a function, from A to B, written

f : A→ B, (A.5)

denotes an association of any element a ∈ A to an element b = f (a) in B, also
written a 7→ b. Then A is called the domain of f , and B the codomain or target of f .
For any subset A′ ⊂ A of A, the set

f (A′) := { f (a)| a ∈ A′} ⊂ B (A.6)

is called the image of A′ under f . In particular, f (A) is shortly called the image of
f . For a subset B′ ⊂ B of B, the set

f−1(B′) := {a ∈ A| f (a) ∈ B′} ⊂ A (A.7)

is called the preimage of B′ under f . In particular, f−1(B) is shortly called the
preimage of f . The map f : A→ B is called …

• injective if f (a) = f (a′) implies a = a′ for all a, a′ ∈ A, or equivalently,
| f−1({b})| = 1 for all b ∈ f (A);

• surjective if f (A) = B;

• bijective if it is both injective and surjective.

Two maps f : A→ B and g: C→ D are equal, if A = C, B = D, and f (x) = g(x)
for all x ∈ A. If for two maps A and B there exists a bijective map, we say that A
and B have the same cardinality and denote A ∼ B. ◁
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Remark A.4. In set theory, a function is considered as a special binary relation. A
binary relation R on two sets A and B is a subset R ⊂ A× B. For instance, let be A
the set of parents and B the set of children, given by

A = {Homer, Marge}, B = {Bart, Lisa, Maggie}.

Then the “Simpsons relation” R = “is mother of” on A and B implies

(Marge, Bart) ∈ R, but (Homer, Lisa) /∈ R.

A special class of binary relations are those f ⊂ A× B assigning to each element
of A some element of B, formally

∀x ∈ A ∃y ∈ B such that (x, y) ∈ R. (A.8)

Such a relation is called a multivalued function, written f : A → P(B). Then a
function f ⊂ A× B is a special relation assigning to each element of A exactly one
element of B [16, §4.16],

∀x ∈ A ∃1y ∈ B such that (x, y) ∈ R. (A.9)

Note that the above defined “Simpsons relation” on A and B is neither a multi-
valued function nor a function. ♢

Remark A.5. From the view point of algorithmics, the computation of a map is
important. In set theory the functions f , g : R2 → R,

f (x, y) = (x + y)2 g(x, y) = x2 + 2xy + y2 (A.10)

are equal, but their computation is rather different. Algorithmically, f is more
efficient than g (since there are only two arithmetical operations to compute f ,
but six for g). Whether the intuitive notion of “function as a computation” can be
represented faithfully in set theory is an unsolved problem [16, p 41]. ♢

Example A.6. (Bijection between N and Z) Define the function f : N→ Z,

f (n) = (−1)n 2n− 1
4

+
1
4

. (A.11)

Then for all n ∈ N we have f (2n) = n and f (2n− 1) = 1− n. In particular, this
implies immediately that f (m) ̸= f (n) if m ̸= n for m, n ∈ N, i.e., f is injective.
Moreover, f is surjective since for any y ∈ Z there exists an element x ∈ N such
that f (x) = y, namely x = 2y if y > 0 and x = 1− 2y if y ≦ 0. Thus, f is a
bijection and N ∼ Z, cf. [8, p 305]. ♢

Remark A.7. In a proof that two general sets A and B have the same cardinality,
it is usually a tedious task to construct a surjective map. By the Cantor-Bernstein
Theorem, often also called Schröder-Bernstein Theorem, it suffices to find two
injective maps f : A→ B and g : B→ A [8, §3.5.1]. ♢

Theorem A.8 (Pigeonhole Principle). Every map f : A → A on a finite set A into
itself is injective if and only if it is surjective.
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Proof. The “only if” part (“ f injective⇒ f (A) = A”) is shown in [16, 5.25]. Let In
= {0, 1, …, n− 1}. The proof bases on the property (A.14) of a map g : In → In,
since A is finite, there exists a bijective permutation π : A→ In, and we can define
g : In → In by the equation

g(i) = π( f (π−1(i))) (A.12)
for i < n so that

f (x) = π−1(g(π(x))) (A.13)
for all x ∈ A. Now if f is injective then also g is injective, as a composition of
injections (A.12); but then by (A.14) g is bijective, and hence f as a compositions
of bijections is bijective. By the same reasoning, if f is surjective, g is surjective as
a compositions of surjections, i.e. injective by (A.14), and thus f is injective as a
composition of injections.
Lemma A.9. Let In = {0, 1, …, n− 1}. For all maps g : In → In and an arbitrary
natural number n we have

g(x) ̸= g(y) ∀x ̸= y ⇐⇒ g(In) = In, (A.14)
with x ∈ y ∈ In.
Proof. The proof is by induction over n. For n = 0 we have only one map g : ∅→
∅, and for n = 1 only one function g : {1} → {1}, and both are bijective. For
the induction step n → n + 1 we assume (A.14) for all maps h : In → In. Since
In+1 = In ∪ {n}, for any map g : In+1 → In+1 and its restriction h := g|In , defined
by h(k) = g(k) for 0 ≦ k < n, we have one of the following three cases.

Case (1): g(n) = n. Then g is clearly injective if and only if h is injective, and g
is surjective if and only if h is surjective.

Case (2): n /∈ g(In+1). This means that g is not surjective, and since g(n) =
h(k) = g(k) for some k, i.e., g then is also not injective. On the other hand, the
assumption that g is injective implies that ̸ ∃k ∈ [0, k) with h(k) = g(n) ∈ [0, n),
i.e., h is not injective, hence g is not injective, which is a contradiction to the as-
sumption.

Case (3): There exist numbers u, v < n such that g(u) = n, g(n) = v. Defining
h′ : In → In,

h′(k) =
{

h(k) if k < n and k ̸= u,
v if k = u. , (A.15)

i.e., a function h′ agreeing with g at all arguments except u, we see that h′ is injec-
tive if and only if g is injective, and that h′ is surjective if and only if g is surjec-
tive.
Remark A.10. Theorem A.8 is equivalently stated as [7, p 130]: If n pigeons are put
into n pigeonholes, then there is an empty pigeonhole if and only if there is a hole with
more than one pigeon. Here an empty pigeonhole means “not surjective,” and a
hole with more pigeons means “not injective.” It implies the pigeonhole principle
in its usual formulation refering to Dirichlet’s Schubfachprinzip (“box principle”)
[8, §2.4]: If more than n objects are distributed over n containers, then some container
must contain more than one object. Here “contain more than one object” means “is
mapped injectively.” ♢
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Remark A.11. (Hilbert’s Hotel) Theorem A.8 cannot be generalized for an infinite
set A. For instance, the map f : N→N,

f (n) = n + 1 (A.16)

is injective, but not surjective. The fact that the pigeonhole principle is not valid
for infinite sets is the reason for the possibility of Hilbert’s Hotel, a hotel with
infinitely many rooms completely numbered by 1, 2, …, all of which are occupied
by a guest. However, if a new guest arrives and wishes to be accommodated in
the hotel, each hotel guest can be moved from his room number n to the next room
with number n + 1. Thus it is possible to make room for any finite number of new
guests. ♢

A.4 Algebra
A main subject of abstract algebra is group theory. It studies possible binary op-
erations on elements of a set, often called structures, which in the end generalize
the addition and multiplication operations of numbers. This section gives a brief
overview to the basic algebraic notions needed in our considerations here. For
more details see any standard textbook on algebra, e.g., [13] or [14]. However,
differing from most standard treatments the emphasis here is laid on properties
of semigroups and monoids which, in the theory of formal languages, play a more
important role than groups.

A.4.1 Semigroups, monoids, and groups
Definition A.12. A semigroup (H, ◦) is a nonempty set H with the binary operation
◦ : H × H → H obeying the law of associativity

(x ◦ y) ◦ z = x ◦ (y ◦ z) (A.17)

for all x, y, z ∈ H. If all elements x, y ∈ H satisfy the law of commutativity

x ◦ y = y ◦ x, (A.18)

then H is called Abelian or commutative. The number |H| of elements of H is called
the order of the semigroup. If it is clear from the context, one often speaks of the
semigroup H instead of (H, ◦). ◁

Definition A.13. A semigroup (M, ◦) is called a monoid if it contains an element
e ∈ M satisfying

e ◦ x = x ◦ e = x (A.19)
for all x ∈ M. In this case, e is called neutral element. ◁

Lemma A.14. The neutral element in a monoid is unique.
Proof. Assume that e′ ∈ M is another neutral element in the monoid. Then by
(A.19) we have e′ ◦ e = e′ (since e is neutral), as well as e′ ◦ e = e (since e′ is
neutral), i.e., e′ = e.
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Examples A.15. (Natural numbers) The pair (N,+) is a semigroup but not a monoid,
but (N0,+) is a monoid with the neutral element 0. Moreover, (N, ·) is a monoid
with the neutral element 1. ♢

Examples A.16. (Maps) Let X be a set. Then the set of all maps X → X is a monoid
with respect to composition of maps, with the identity map as neutral element. ♢

Examples A.17. (Words) Let Σ be an alphabet. Then the set Σ+ of all words over
Σ, i.e., all strings of letters from Σ, is a semi-group with respect to concatenation
[5, §6.1]. The set Σ∗ containing the empty string ε is a monoid with the empty
string as neutral element. ♢

Definition A.18. A group (G, ◦) is a nonempty set G with the binary operation
◦ : G× G → G obeying the three group axioms, namely: the law of associativity

(x ◦ y) ◦ z = x ◦ (y ◦ z) (A.20)

for all x, y, z ∈ G; there exists an element e ∈ G satisfying

e ◦ x = x, (A.21)

the neutral element; for each x ∈ G there exists an element x−1 ∈ G such that

x−1 ◦ x = e. (A.22)

It is called the inverse of x (with respect to the operation ◦). If all elements x, y ∈ G
satisfy the law of commutativity

x ◦ y = y ◦ x, (A.23)

then G is called Abelian or commutative. ◁

Lemma A.19. Let be G a group and x ∈ G with the neutral element e ∈ G. Then we
have

x ◦ e = x, (A.24)
x ◦ x−1 = e (A.25)

for all x ∈ G. In particular, a group is a monoid. Moreover, for each x ∈ G the inverse
x−1 ∈ G is unique.

Proof. For x ∈ G there exists an element y = x−1 ∈ G with y ◦ x = e, and an
element z = y−1 ∈ G with z ◦ y = e. Thus

x = e ◦ x = (z ◦ y) ◦ x = z ◦ (y ◦ x) = z ◦ e.

Substituting e by (e ◦ e) this gives x = z ◦ (e ◦ e) = (z ◦ e) ◦ e = x ◦ e, i.e., (A.24).
In addition, z = z ◦ e = x and therefore x ◦ y = z ◦ y = e, i.e., (A.25). If y′ ∈ G is
another element being an inverse of x, then we have y′ = y′ ◦ e = y′ ◦ (x ◦ y) =
(y′ ◦ x) ◦ y = e ◦ y = y.
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Examples A.20. (Numbers) The monoids (N0,+) and (N, ·) of Example A.15 are
not groups. However, (Z,+) and (Q×, ·) with Q× = Q \ {0} are commutative
groups, as well as (R,+) and (R×, ·) with R× = R \ {0}. (R, ·) is an Abelian
monoid but not a group, (R×,+) is not even a semigroup, ♢

Examples A.21. (Matrices) For n ∈ N, let denote Mn(K) the set of all (n × n)
matrices over a field K, for instance Q, R, or C. Then (Mn(K), ·) with the matrix
multiplication · and the identity matrix as neutral element. is a monoid, but not a
group. However, (Mn(K),+) with the matrix addition is a commutative group,
and the set GL(n, K) of invertible matrices in Mn(K) is a non-commutative group
(GL(n, K, ·) with the identity matrix as neutral element. GL(n, K) is called the
general linear group over K. ♢

Examples A.22. (Unit fractions) Let F = {1, 1
2 , 1

3 , . . .} denote the set of unit frac-
tions 1

n with n ∈ N. Then (F, ·) and (F ∪ {0}, ·) are monoids, each with neutral
element 1. ♢

Remark A.23. There are two usual ways to write the group operation, the additive
notation and the multiplicative notation. In the additive notation we write x + y
instead of x ◦ y, 0 is the neutral element, and the inverse of x is written as −x.
It usually denotes commutative operations. In the multiplicative notation, xy is
written instead of x ◦ y, 1 is the neutral element, and x−1 is the inverse of x. ♢

Definition A.24. Let G be a semigroup. Then a subsemigroup H ⊂ G being in G
is called normal if

xH = Hx for all x ∈ G, (A.26)
where xH = {xh| h ∈ H} and Hx = {hx| h ∈ H}. Analogously, a submonoid
H of a monoid G is called normal if (A.26) holds literally, and a subgroup H of a
group G is called normal if (A.26) holds. ◁

Theorem A.25. Is H a subgroup of a group G, then the following assertions are equiv-
alent:

(i) xH = Hx for all x ∈ G;

(ii) x−1Hx = H for all x ∈ G;

(iii) x−1hx ∈ H for all x ∈ G and h ∈ H.

Proof. The implications (i)⇒ (ii)⇒ (iii) are clear. To show (iii)⇒ (i), let x ∈ G and
h ∈ H be given; then xh = (x−1)−1hx−1x ∈ Hx and hx = x(x−1hx) ∈ xH.

Theorem A.26. All subgroups of an Abelian group are normal.

Example A.27. (Matrices) Let K be Q, R, or C (or an arbitrary field), and denote the
special linear group SL(n, K) the set of all (n× n)matrices over K with determinant
1. Then SL(n, K) is a normal subgroup of the general linear group GL(n, K) from
Example A.21. ♢
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A.4.2 Homomorphisms
Structure-preserving maps between algebraic structures are called homomorphisms
and play an important role in algebra.

Definition A.28. Let G and H be two semigroups. Then a map f : G → H is
called a homomorphism if

f (xy) = f (x) f (y) (A.27)
for all x, y ∈ G. The set of all homomorphisms from G to H is denoted by
Hom(G, H). The set

im f := f (G) := { f (x)| x ∈ G} (A.28)

is called the image of f . If G and H are monoids and e′ ∈ H is the neutral element
in H, the set

ker f := f−1({e′}) := {x ∈ G| f (x) = e′} (A.29)
is called the kernel of f . ◁

Lemma A.29. If f ∈ Hom(G, H) for two monoids G and H with neutral elements
e ∈ G and e′ ∈ H, then f (e) = e′.

Proof. We have f (e) = f (ee) = f (e) f (e), i.e., f (e) = e′.

Theorem A.30. If f ∈ Hom(G, H) for two groups G and H, then

f (xn) = f (x)n (A.30)

for all n ∈ Z. If G and H are monoids, the equation holds for all n ∈N0, and if they are
semigroups, it holds for all n ∈N.

Proof. For n ∈ N Equation (A.30) follows by induction from (A.27). In case of
monoids, x0 = e and f (x0) = f (x)0 = e′ by Lemma A.29. Finally, if G and H are
groups, e′ = f (e) = f (xx−1) = f (x) f (x−1), hence f (x)−1 = f (x−1).

Corollary A.31. Let f ∈ Hom(G, H), with G and H specified as follows.

(i) If G and H are semigroups then im f is a subsemigroup in H.

(ii) If G and H are monoids or groups then im f is a submonoid of H, ker f is a normal
submonoid of G. f (ker f y) = f (yx) if x

(iii) If G and H are groups then im f is a subgroup of H and ker f is a normal subgroup
of G.

Proof. The assertions for the image set im f follow directly from Equation (A.27)
and Theorem A.29. In case (ii) and (iii) we have for any y ∈ G, x ∈ K := ker f and
the neutral element e′ ∈ H that f (xy) = f (x) f (y) = e′ f (y) = f (y)e′ = f (y) f (x) =
f (yx), i.e., f (Ky) = f (yK), and hence Ky = f−1( f (Ky)) = f−1( f (yK)) = yK.

An important special class of homomorphisms of a semigroup G are are those
which are bijective, and in particular those mapping G bijectively into G itself.



Formal Languages 35

Definition A.32. For semigroups G and H, a bijective homomorphisms from G to
H is called an isomorphism. The set of isomorphisms from G to G is given by

Aut(G) := Hom(G, G) (A.31)

and is called the set of automorphisms of G. ◁

Lemma A.33. For a semigroup G and the map composition ◦: Aut(G)×Aut(G) →
Aut(G), the pair (Aut(G), ◦) is a group, with the identity map IdG as neutral element.

Proof. By definition of the composition ◦ the law of associativity (A.20) is satisfied.
For any f ∈ Aut(G) and x ∈ G we have (IdG ◦ f )(x) = IdG( f (x))) = f (x),
i.e., IdG ◦ f = f as required by (A.21). Let f ∈ Aut(G) and x, y ∈ G such that
y = f (x). Since Aut(G) consists of all homomorphisms from G to G, there exists
one that maps y to x, i.e., f−1 ∈ Aut(G), satisfying (A.22).

Definition A.34. Let G be a group and g ∈ G an invertible element. Then the map

Cg : G → G, x 7→ gxg−1 (A.32)

is called the conjugation with g. ◁

Lemma A.35. For a semigroup G and an invertible element g ∈ G, the conjugation Cg
with g is an automorphism, i.e., Cg ∈ Aut(G).

Proof. For x, y ∈ G we have Cg(xy) = gxyg1 = (gxg1)(gyg1) = Cg(x)Cg(y),
and Ce = IdG for the neutral element e ∈ G. Hence Cg is a homomorphism.
Since for two elements x, y ∈ G the equality gxg−1 = gyg−1 implies x = y after
multiplying with g−1 from the left and with g from the right, Cg is injective. Since
then the order of G is the same then the order of Cg(G), i.e., |Cg(G)| = |G|, Cg is
also surjective.

Theorem A.36. There are only five non-isomorphic semigroups of order two, given by
the following multiplication tables (“Cayley tables”):

O2 LO2 RO2 ({0, 1},∧) Z2

·0 0 1
0 0 0
1 0 0

·l 0 1
0 0 0
1 1 1

·r 0 1
0 0 1
1 0 1

∧ 0 1
0 0 0
1 0 1

⊕ 0 1
0 0 1
1 1 0︸ ︷︷ ︸

semigroups monoid group

(A.33)

Proof. A complete enumeration of all 222
= 16 possible binary operations on the

set {0, 1}, i.e., all combinations of filling the Cayley table

◦ 0 1
0 a00 a01
1 a10 a11
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with aij ∈ {0, 1}. Regarding isomorphims yields the assertion.3 O2, LO2 and RO2
each are no monoids since they do not have a neutral element. Instead, in O2 the
element 0 is an “absorbing” element, in LO2 both 0 and 1 are left-absorbing, and
in RO2 both are right-absorbing. The semigroup ({0, 1},∧) is a monoid with the
neutral element 1, and Z2 = ({0, 1},⊕) is a group with neutral element 0 and 1
being its own inverse.

Remark A.37. The semigroup O2 is called the null semigroup, LO2 the left zero
semigroup, and RO2 the right zero semigroup. RO2 and LO2 are not isomorphic but
antiisomorphic, and hence “equivalent.” Moreover, ({0, 1},∧) is isomorphic to
({0, 1},∨), but here the neutral element is 0. An isomorphic matrix representation
of ({0, 1},∧) is ({I, A}, ·) with

I =
(

1 0
0 1

)
, A =

(
1 0
0 0

)
, (A.34)

and the operation · being the usual matrix multiplication. In Z2 = ({0, 1},⊕) the
binary operation ⊕ is a logical XOR. ♢

Remark A.38. In general there are nn2 possible binary operations on a set with n el-
ements. Under oeis.org/A027851 the On-Line Encyclopedia of Integer Sequences, lists
the number of nonisomorphic semigroups with n elements, and under oeis.org/A001423
the number of nonequivalent semigroups. ♢

3 http://en.wikipedia.org/wiki/Semigroup_with_two_elements [2011-05-17]

http://oeis.org/A027851
http://oeis.org/A001423
http://en.wikipedia.org/wiki/Semigroup_with_two_elements
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